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ABSTRACT —
Collision integrals for the exponential attractive potential are

calculated by accurate numericsl integration. There are some

unexpected differences from what had been expected by analogy with

inverse power attractive potentials. Some implications of these

results for the calculation of high-temperature gas transport

properties are discussed. 74“ ‘(, /l K)/
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I. INTRODUCTION

Simple attractive or repulsive potentials are useful for
calculations of the transport properties of gases, especially at high

temperatures where the van der Waals forces are not important and the
1,2

alomic interactions are governed by valence or exchange forces
Single term inverse power laws have been a favorite representation

of such potentials, partly because the evaluation of their transport
collision integrals requires only a single set of gquadratures. The
numerical results available for inverse power attractive and repulsive
potentials have been summarized and extended by Kihara, Taylor, and
Hirschfelder.5 However, it often happens that a single term exponential
gives a better representation of the interaction than does an inverse
power, but the evaluation of the collision integrals for an exponential
potential requires a large amount of numerical quadrature. The
collision integrals for the repulsive exponential have been accurately
calculated by Monchick,u but the only results available for the

2 based on a scaling

attractive exponential are an estimate by Brokaw
analogy with attractive inverse powers.

The purpose of this paper is to report the calculation of the
collision integrals for the exponential attractive potential by
accurate numerical integration. Such a calculation is now comparatively

easy because of the existence of an efficient computer program for the

automatic calculation of collision integrals.




Comparison of the results with those for inverse power attractive potentials
and with Brokaw's estimates shows that the collision integrals for
viscosity correlate well (i.e.Brokaw's estimates are reasonably accurate),
but that the collision integrals for diffusion do not correlate well and

in fact show a rather different temperature dependence. Some implications
of these results for the calculation of high-temperature gas transport

properties are discussed.
II. NUMERICAL CALCULATIONS

It i1s first necessary to decide on a condition at the origin for
an attractive potential, inasmuch as different assumptions can lead fo

quite different collision integrals.3

We chose the repulsive core
condition, in which the potential has a small repulsive core at the
origin to deflect outwards any trajectories of relative motion that reach
the origin, since this is the most realistic model in the problems of
physical interest. In the 1imit of a core of infinltesimal size, the
exact nature of the repulsion is expected to be unimportant and can be
chosen for mathematical convenience. The usual choice of a rigid-sphere
core was impractical because of the discontinulty involved; a short-
ranged exponential was therefore used, and the collision integrals for the
attractive exponentisl were calculated as the low-temperature limits of
the Morse potential,

9)(r) = eliéxp [-E(C/Cr)(r-re)] -2 exp [-(C/o’)(r-re)]} ,

where € is the depth of the potential well, Te its position, g the
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separation for which (o) = 0, and C 1s a parameter which gives a
measure of the width of the well, related to To and O by the relation

C [(re/o') - 1] = 1n 2. If we write the attractive exponential in the

f'orm
@P(r) = - exp (-r/p), (2)
then @ = 2€ exp (Cre/cr) and |p= a/c.
7

The conventional definition’' of the reduced collision integrals
(2,s)* .
Q to be equal to unity for rigid spheres of diameter ¢, and to

*
be functions of the reduced temperature T = kT/e, are inconvenient

for exponential potentials, 4,5 and we have adopted the dezfini‘t;ions5
72 (/A (e, (3)
o = ln(t‘fo/kT) =C - 1n (T*/4). (%)

The procedure was to pick a value of C and then evaluate .Q(‘e’s)* by the
previously described computer program6 at successively lower values of
T¥ until the results appeared to be independent of the repulsive core. As
a check the process was repeated with a new value of C. On converting

all these results to a plot of J(‘a’s)

vs. Q, we find a family of curves,
one for each value of C, which approach a common limiting curve
characteristic of the attractive part of the potential alone, as shown in
(1,1) s o = ,
Fig. 1 for J with C = 10, and C = 20.
The uncertainty in the numerical intergrations is estimated to

(2,2
(1,1) and J("’) were

be no worse than 1 or 2 parts in 1000. Values of J
read off large-scale graphs at round values of ¢, and are given in

Table I. This process did not appreciably increase the numerical




uncertainty. The collision integral ratios A%, B¥, and C*, which occur in
gas mixture formulas,7 are also glven in Table I. The ratio A¥* was
calculated directly from the definition, but B* and C* were calculated

from the identities

cx=1-2 -+ andbl | (5)
X5
B¥* = C¥{L-20%) &+ gC* . (€)
ac
The ratio E¥ which occurs in some of the higher approximations, was also
calculated from an identity,
2,2)
(2 3)*/ (2,2)* 1 1 dan( ’ (7)
H= 4 > = - m— - — g
Bx= (), { 1-%% "F &«

The derivatives, which contribute less than one percent to the results, were
evaluated by numerical differentiation. Because of the smallness of the
derivatives, the ratios B¥, C¥, and E* can be given to one more significant

figure than the other quantities in Table I.
IIT. DISCUSSION

A remarkable result noticed in the present calculations is that
T* must be very low indeed before the effect of the repulsive core has
disappeared, of the order of 10'2 or 10-3. In view of this result, we
have not extended the tabulations to low values of o, which would correspond
to larger values of T¥. UFor such cases,the full results for the Morse
potent1316 should probably be used.

The results for the repulsive exponential and for Brokaw's

(1,1) ,_, 5(2,2)

estimates of the present values of J are shown in Fig. 1

for comparison with the present calculations. All three results are in

(2,2)

reasonable accord for J , but for J(l’l) Brokaw's estimates are quite




far off and the repulsive exponential values are reasonably close. This
is surprising, and in fact is just the reverse of what we had expected.
We conjecture that this 1s due to the different conditions at the

potential origin for an exponential potential and for the linverse power

potentials upon which Brokaw based his estimates. The exponential is

already known from the results for inverse power potentials that the
£ =1 integrals are sensitive to the conditions at the origin , but that
the =2 integrals are independent of them.3

In Brokaw's scheme, the attractive exponential is matched in |
value and slope by an inverse power potential, at a specified mean value
of separation distance which varies with temperature. Since this scheme
turned out to be poor for J(l’l), it is worthwhile to consider other
possibilities for correlating the collision integrals for exponential and
inverse power potentials into a single family group. In this connection
the correlation scheme used by Baroody8 for repulsive potentials is of
interest. Baroody analyzed the scattering in terms of two energy-
dependent parameters, the distance of closest approach in a head-on
collision, r.s and the slope of the potential at this distance,
y= - (d]levhlnr)rc. These choices obviously are inappropriate for an
attractive potential, which has r, = 0, but the obvious analogue is the
critical distance of closest approach for orbiting, ro. This is a unique
point for an attractive potential. Since orbiting tends to produce

isotropic scattering, which 1s also characteristic of rigid spheres, it

might be expected that nrog would be a good measure of the cross sections.



Such an estimate for the diffusion cross sectlon of lons in neutral gases

9

has been used by Dalgarno, McDowell, and Williams,” who call it a "capture"

cross section. The slope parameter would then be 7 = (d In¥/d 1n r)r .

o
This correlation scheme can be carried through without difficulty, but the

results are very similar to Brokaw's. In particular, the predicted J(E’e)

FIEARIRAE

+
is teoc high and has the wron

is not bad, but the predicte the wrong
temperature dependence.

We conclude that collision integrals for attractive exponential
potentials are not necessarily similar to collision Integrals for attractive
inverse power potentials, although there does seem to be a close similarity
for repulsive potentials, as shown by Brokaw.

In view of the foregoing results, it is worthwhile to investigate
the errors to be encountered in calculatilons of high-temperature gas transport
properties when the "tails" of potential energy curves are represented by
attractive exponentials. A simple procedure 1s to assume some potential
model to be the exact potential, curve-fit the "tail" of the model curve by
an exponential, and see how much error in the collision integrals results.

We have selected the Morse potential to represent an exact interatomic
potential.10 For C = 20, we find graphically that the Morse potential can
be well represented forfy(r) = 0.5¢ to 0.0le by the expression

P(r) = -(1.7’xlowe)exp (-r/0.033 ). (7

The quantities which directly determine the transport coefficients are the
* .

eﬂ(ﬁ,s) . 2/02J(,Z,s)

(£ ,s)

products T We should therefore compare the Morse

*
values of ﬁ,ﬂ,s) with (0.033¢x )2J , where ¢ = 1n (1.7x101)+€/kT). Such

a comparison 1s shown in Table II for several values of kT/e. All the




TABLE T

Collision integrals for the exponential attractive potential

A1,1)

0.903%
0.910
0.916
0.922
0.928
0.933
0.937
0.941
0.944
0.947
0.950
0.953
0.955
0.957
0.959
0.961
0.9625
0.964
0.9655
0.9665
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1.114
1.104
1.096
1.089
1.082
1.076
1.071
1.066
1.061
1.058
1.055
1.052
1.049
1.047
1.045
1.043%
1.041
1.039
1.037
1.0%6

B*

1.0751
1.0669
1.0611
.0565
.0522
.0483
L0450
.0k21
.0396
L0374
.0355
.0338
.0320
.0306
.0292
.0281
.0269
.0260
L0247

L0237
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C*

L9615
.9656
.9686
Revahl
9734
975k
9771
.9786
9799
.9810
.9820
.9829
.9838
.9845
.9852
.9858
.9864
.9869
.9875
.9880

E*

0.9723
0.9751
0.9774
0.9793
0.9809
0.9821
0.9833
0.9844
0.9853
0.9861
0.9868
0.9875
0.9881
0.9886
0.9891
0.9896
0.9900
0.9904
0.9908
0.9911



TABLE II

Comparison of collision integrals calculated exactly for the Morse potential

with € = 20, and for approximations in which the potential "tail" is fitted

by an exponential.

KT ﬂ(l’l)* n_l(e,e)*

€ Exact Present Brokaw Exact Present Brokaw
0.01 1.5739 1.443 1.556 1.6986 1.524 1.569
0.0k 1.4109 1.336 1.443 1.5246  1.41% 1.457
0.10 1.3117 1.267 1.372 1.4171 1.342 1.385
0.40 1.1800 1.165 1.266 1.2692 1.238 1.279
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FIGURE CAPTION

~

Collision integrals for exponentiail
potentiagls. Solid curves are for an
attractive potential, and dashed curves
for a repulsive potential. The branches
marked C = 10 and C = 20 show how the
collision integrals for Morse potentials
approach those for the attractive
exponential at low temperatures. Brokaw's
curves are estimates based on an analogy

with inverse power potentials.
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